Linux 内存管理

在Linux的使用中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然。这是Linux内存管理的一个优秀特性,在这方面,区别于Windows的内存管理。其主要特点是,无论物理内存有多大,Linux 都将其充分利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能。而Windows是只在需要内存时,才为应用程序分配内存,并不能充分利用大容量的内存空间。换句话说,每增加一些物理内存,Linux都将能充分利用起来,发挥了硬件投资带来的好处,而Windows只将其做为摆设,如果系统不同时运行大量程序,多余的内存将永远无用武之地。

在了解Linux内存管理机制之前,我们先明确几个概念:

一、物理内存和虚拟内存

在Linux里(别的系统也差不多),内存有物理内存和虚拟内存之说,物理内存就是系统硬件提供的内存大小,是真正的内存,我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成。虚拟内存实际是物理内存的抽象,多数情况下,出于方便性的考虑,程序访问的都是虚拟内存地址,然后操作系统会通过Page Table(页表)机制把它翻译成物理内存地址。
很多人会把虚拟内存和Swap混为一谈,实际上Swap只是虚拟内存引申出的一种技术而已:操作系统一旦物理内存不足,为了腾出内存空间存放新内容,就会把当前物理内存中的内容放到交换分区里,稍后用到的时候再取回来,需要注意的是,Swap的使用可能会带来性能问题,偶尔为之无需紧张,糟糕的是物理内存和交换分区频繁的发生数据交换,这被称之为Swap颠簸,一旦发生这种情况,先要明确是什么原因造成的,如果是内存不足就好办了,加内存就可以解决,不过有的时候即使内存充足也可能会出现这种问题,比如MySQL就有可能出现这样的情况,一个可选的解决方法是限制使用Swap:
shell> sysctl vm.swappiness=0
作为物理内存的扩展,Linux会在物理内存不足时,使用交换分区Swap,更详细的说,就是内核会将暂时不用的内存块信息写到交换空间,这样一来,物理内存得到了释放,这块内存就可以用于其它目的,当需要用到原始的内容时,这些信息会被重新从交换空间读入物理内存。

二、内存地址

每个进程都有一个32位或64位的地址空间,取决于体系结构。 一个进程的地址空间与另一个进程的地址空间即使有相同的内存地址,也彼此互不相干,对于这种共享地址空间的进程称之为线程。

  1. 逻辑地址(Logical Address)
    是指由程序产生的与段相关的偏移地址部分。例如,你在进行C语言指针编程中,可以读取指针变量本身值(&操作),实际上这个值就是逻辑地址,它是相对于你当前进程数据段的地址,不和绝对物理地址相干。只有在Intel实模式下,逻辑地址才和物理地址相等(因为实模式没有分段或分页机制,Cpu不进行自动地址转换);逻辑也就是在Intel保护模式下程序执行代码段限长内的偏移地址(假定代码段、数据段如果完全一样)。应用程序员仅需与逻辑地址打交道,而分段和分页机制对您来说是完全透明的,仅由系统编程人员涉及。应用程序员虽然自己可以直接操作内存,那也只能在操作系统给你分配的内存段操作。
    我们大可以把程序运行的入口地址理解为逻辑地址的起始地址,也就是说,一个程序的开始的地址。以及以后用到的程序的相关数据或者代码相对于这个起始地址的位置(这是由编译器事先安排好的),就构成了我们所说的逻辑地址。逻辑地址就是相对于一个具体的程序(事实上是一个进程,即程序真正被运行时的相对地址)而言的。尽管我们这样理解可能有一些细节上的偏差,但是比起网上一些含糊其辞,让人不知所云的描述要好得多,实用得多,等到自己对这个地址有更加深刻的理解的时候,再对上面的理解进行一些补充或者纠正。
    总之一句话,逻辑地址是相对于应用程序而言的。
  2. 线性地址(Linear Address)
    是逻辑地址到物理地址变换之间的中间层。程序代码会产生逻辑地址,或者说是段中的偏移地址,加上相应段的基地址就生成了一个线性地址。如果启用了分页机制,那么线性地址可以再经变换以产生一个物理地址。若没有启用分页机制,那么线性地址直接就是物理地址。Intel 80386的线性地址空间容量为4G(2的32次方即32根地址总线寻址)。
    我们知道每台计算机有一个CPU(我们从单CPU来说吧,多CPU的情况应该是雷同的),最终所有的指令操作或者数据等等的运算都得由这个CPU来进行。线性地址的本质就是“CPU所看到的地址”。如果我们追根溯源,就会发现线性地址的就是伴随着Intel的X86体系结构的发展而产生的。当32位CPU出现的时候,它的可寻址范围达到4GB,而相对于内存大小来说,这是一个相当巨大的数字,我们也一般不会用到这么大的内存。那么这个时候CPU可见的4GB空间和内存的实际容量产生了差距。而线性地址就是用于描述CPU可见的这4GB空间。我们知道在多进程操作系统中,每个进程拥有独立的地址空间,拥有独立的资源。但对于某一个特定的时刻,只有一个进程运行于CPU之上,此时,CPU看到的就是这个进程所占用的4GB空间,就是这个线性地址。而CPU所做的操作,也是针对这个线性空间而言的。
    对linux而言,CPU将4GB划分为两个部分,0-3GB为用户空间(也可以叫核外空间),3-4GB为内核空间(也可以叫核内空间)。操作系统相关的代码,即内核部分的代码数据都会映射到内核空间,而用户进程则会映射到用户空间。

  3. 物理地址(Physical Address)
    用于内存芯片级的单元寻址,与处理器和CPU连接的地址总线相对应。 这个概念应该是这几个概念中最好理解的一个,但是值得一提的是,虽然可以直接把物理地址理解成插在机器上那根内存本身,把内存看成一个从0字节(Byte)一直到最大空量逐字节的编号的大数组,然后把这个数组叫做物理地址,但是事实上,这只是一个硬件提供给软件的抽象,内存的寻址方式并不是这样。所以,说它是“与地址总线相对应”,是更贴切一些,不过抛开对物理内存寻址方式的考虑,直接把物理地址与物理的内存一一对应,也是可以接受的。错误的理解更利于形而上的抽象。
    以Intel的中央处理器为例,Linux 32位的系统中,物理内存的基本单位是字节,1个字节有8个二进制位。每个内存地址指向一个字节,内存地址加1后得到下一个字节的地址。这里用以表示物理内存实际位置的地址,就是通常所说的物理地址。CPU正在执行的进程代码、进程数据和栈区数据等,都临时保存在物理内存中。

  4. 内存管理单元(MMU)
    MMU由一个或一组芯片组成,其功能是把逻辑地址映射为物理地址,即进行地址转换。MMU是一种硬件电路,它包含两个部件,一个是分段部件,一个是分页部件,我们通常把它们分别叫做分段机制和分页机制,以利于从逻辑的角度来理解硬件的实现机制。分段机制把一个逻辑地址转换为线性地址;接着,分页机制把一个线性地址转换为物理地址。
    Linux中逻辑地址等于线性地址。因为Linux所有的段(用户代码段、用户数据段、内核代码段、内核数据段)的线性地址都是从 0x00000000 开始,长度4G,这样 线性地址=逻辑地址+ 0x00000000,也就是说逻辑地址等于线性地址了。

 

Linux 内存管理机制

 

80386的工作模式包括实地址模式和虚地址模式(保护模式)。Linux主要工作在保护模式下。

1. 分段机制:

在保护模式下,80386虚地址空间可达16K个段,每段大小可变,最大达4GB。
从逻辑地址到线性地址的转换由80386分段机制管理。段寄存器CS、DS、ES、SS、FS或GS标识一个段。这些段寄存器作为段选择器,用来选择该段的描述符。

分段逻辑地址到线性地址转换图
zpjs069030

2. 分页机制:

分页机制就是把内存地址空间分为若干个很小的固定大小的页,每一页的大小由内存决定,就像Linux中ext文件系统将磁盘分成若干个Block一样,这样做是分别是为了提高内存和磁盘的利用率。试想以下,如果将磁盘空间分成N等份,每一份的大小(一个Block)是1M,如果我想存储在磁盘上的文件是1K字节,那么其余的999字节是不是浪费了。所以需要更加细粒度的磁盘分割方式,我们可以将Block设置得小一点,这当然是根据所存放文件的大小来综合考虑的,内存中的分页机制跟ext文件系统中的磁盘分割机制非常相似。
Linux中一般页的大小是4KB,我们把进程的地址空间按页分割,把常用的数据和代码页装载到内存中,不常用的代码和数据保存在磁盘中。

分页机制的作用

  • 分页机制是在段机制之后进行的,它进一步将线性地址转换为物理地址。
  • 80386使用4K字节大小的页,且每页的起始地址都被4K整除。因此,80386把4GB字节线性地址空间划分为1M个页面,采用了两级表结构。

两级页表
两级表的第一级表称为页目录,存储在一个4K字节的页中,页目录表共有1K个表项,每个表项为4个字节,线性地址最高的10位(22-31)用来产生第一级表索引,由该索引得到的表项中的内容定位了二级表中的一个表的地址,即下级页表所在的内存块号。
第二级表称为页表,存储在一个4K字节页中,它包含了1K字节的表项,每个表项包含了一个页的物理地址。二级页表由线性地址的中间10位(12-21)位进行索引,定位页表表项,获得页的物理地址。页物理地址的高20位与线性地址的低12位形成最后的物理地址。

利用两级页表转换地址

 

page

分段和分页机制的实现需要硬件的实现,这个硬件名字叫做MMU(Memory Management Unit),他就是专门负责从虚拟地址到物理地址转换的,也就是从虚拟页找到物理页。

Write a Reply or Comment

电子邮件地址不会被公开。 必填项已用*标注